On Arithmetic Of Hyperelliptic Curves

نویسنده

  • Jing Yu
چکیده

In this exposé, Pell’s equation is put in a geometric perspective, and a version of Artin’s primitive roots conjecture is formulated for hyperelliptic jacobians. Also explained are some recent results which throw new lights, having to do with Ankeny-Artin-Chowla’s conjecture, class number relations, and Cohen-Lenstra heuristics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Arithmetic on Genus 2 Hyperelliptic Curves over Finite Fields via Explicit Formulae

We extend the explicit formulae for arithmetic on genus two curves of [13, 21] to fields of even characteristic and to arbitrary equation of the curve. These formulae can be evaluated faster than the more general Cantor algorithm and allow to obtain faster arithmetic on a hyperelliptic genus 2 curve than on elliptic curves. We give timings for implementations using various libraries for the fie...

متن کامل

Classification of genus 2 curves over F2n and optimization of their arithmetic

To obtain efficient cryptosystems based on hyperelliptic curves, we studied genus 2 isomorphism classes of hyperelliptic curves in characteristic 2. We found general and optimal form for these curves, just as the short Weierstrass form for elliptic curves. We studied the security and the arithmetic on their jacobian. We also rewrote and optimized the formulas of Lange in characteristic 2, and w...

متن کامل

Fast Arithmetic In Jacobian Of Hyperelliptic Curves Of Genus 2 Over GF(p)

In this paper, we suggest a new fast transformation for a divisor addition for hyperelliptic curves. The transformation targets the Jacobian of genus-2 curves over odd characteristic fields in projective representation. Compared to previously published results, the modification reduces the computational complexity and makes hyperelliptic curves more attractive for applications.

متن کامل

Empirical optimization of divisor arithmetic on hyperelliptic curves over F2m

A significant amount of effort has been devoted to improving divisor arithmetic on low-genus hyperelliptic curves via explicit versions of generic algorithms. Moderate and high genus curves also arise in cryptographic applications, for example, via the Weil descent attack on the elliptic curve discrete logarithm problem, but for these curves, the generic algorithms are to date the most efficien...

متن کامل

Jacobian Nullwerte, Periods and Symmetric Equations for Hyperelliptic Curves

We propose a solution to the hyperelliptic Schottky problem, based on the use of Jacobian Nullwerte and symmetric models for hyperelliptic curves. Both ingredients are interesting on its own, since the first provide period matrices which can be geometrically described, and the second have remarkable arithmetic properties.

متن کامل

The Arithmetic of Hyperelliptic Curves

We summarise recent advances in techniques for solving Diophantine problems on hyperelliptic curves; in particular, those for finding the rank of the Jacobian, and the set of rational points on the curve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001